

## GM23392\*B

# Certificate of Analysis

| Product description                          | Human Fibroblast reprogrammed with four factors (OCT4, SOX2, NANOG, LIN28A) using retroviral vector |                   |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|--|
| Publication(s) describing iPSC establishment |                                                                                                     |                   |  |
| Parent cell line and cell type               | GM06114                                                                                             | Fibroblast        |  |
| Diagnosis                                    | Apparently Healthy Fetal Tissue                                                                     |                   |  |
| Passage of iPSC reported at submission       | 16                                                                                                  |                   |  |
| Number of passages at Coriell                | 5                                                                                                   |                   |  |
| Media                                        | DMEM/F12 + 20% KOS                                                                                  | SR + 100ng/ml FGF |  |
| Feeder                                       | CF1 MEFs on 0.1% Gel                                                                                | atin              |  |
| Passage method                               | Collagenase                                                                                         |                   |  |
| Split ratio                                  | 1:6; every 5-7 days                                                                                 |                   |  |

The following testing specifications have been met for the specified product lot:

| Test Description                                          | Test Method     | Test Specification                                   | Result |
|-----------------------------------------------------------|-----------------|------------------------------------------------------|--------|
| Post-Thaw Viable Cell<br>Recovery                         | Colony Doubling | Colony formation and diameter doubling within 5 days | Pass   |
| Sterility                                                 | Growth on agar  | Negative                                             | Pass   |
| Mycoplasma                                                | PCR             | Negative                                             | Pass   |
| Karyotype                                                 | G-banding       | 46 XY                                                | Pass   |
| STR (THO-1, D22S417, D10S526, vWA31, D5S592, and FES/FPS) |                 | Match parent<br>fibroblast line                      | Pass   |
| Surface Antigen<br>Expression of Stem<br>Cell Markers     | Immunostaining  | > 80% expression of<br>SSEA-4                        | Pass   |
| Teratoma Formation In Vivo Teratoma formation             |                 | 3 germ layer teratoma                                | Pass   |

## **Post-Thaw Viability**

One vial of distribution lot was thawed. Cultures were observed daily. Colonies were photographed when they first appeared, then 7 days later (Colonies must double in diameter within 5 days).

| Day 2 | 222 µm  |
|-------|---------|
| Day 9 | 1069 μm |

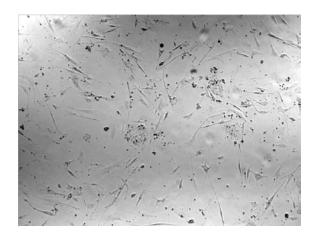



Figure 1A. Colony observed post thaw

Figure 1B. Colony 7 days after first observation

# **Karyotype Analysis**

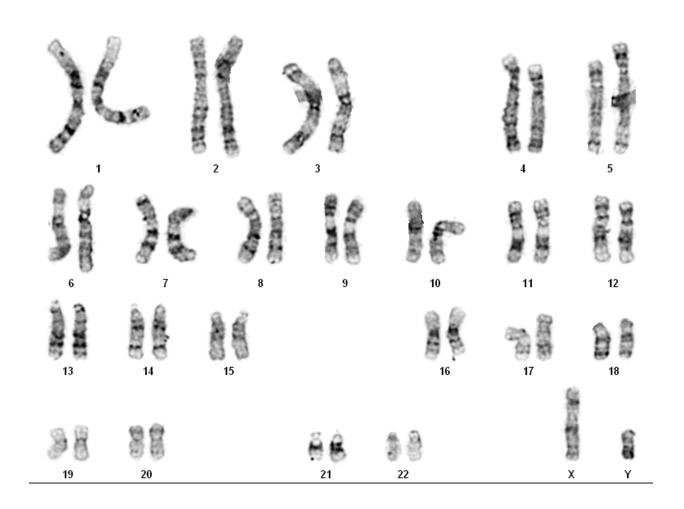



Figure 2: G-banded karyotype showing 46 XY

## **Surface Antigen Expression of Stem Cell Markers**

Undifferentiated cells are stained for the surface antigen, SSEA4. SSEA4 (stage specific embryonic antigen 4) is expressed on undifferentiated human stem cells.

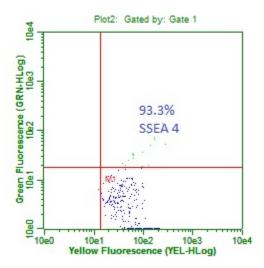
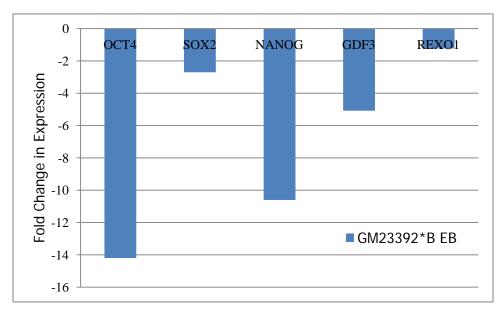




Figure 3: Dot Plot of SSEA-4 positive population.

## **Assessment of Pluripotency of a Cell Line**

Cells are directed to differentiate to assess the pluripotency of the cell line. RNA is harvested and gene expression is analyzed by real-time PCR. Ct values are adjusted for loading using a housekeeping gene. Gene expression is shown as fold difference to undifferentiated cells.

## **Embryoid Body (EB) Formation Assay**



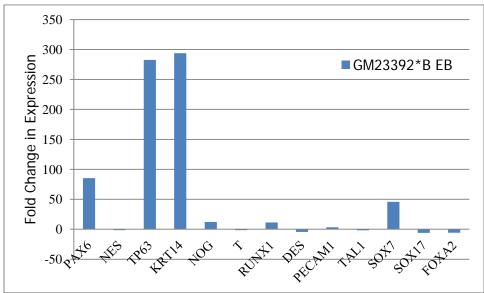



Figure 4. Gene expression following EB differentiation. Fold difference is shown relative to undifferentiated iPS cell line.

## **Pluripotency Markers**

|              | OCT4 | SOX2 | NANOG | GDF3 | REXO1 |
|--------------|------|------|-------|------|-------|
| GM23392*B EB | -14  | -3   | -11   | -5   | -1    |

## **Ectoderm**

|              | PAX6 | NES | TP63 | KRT14 | NOG |
|--------------|------|-----|------|-------|-----|
| GM23392*B EB | 85   | -1  | 283  | 294   | 12  |

## **Mesoderm**

|           | Т  | RUNX1 | DES | PECAM1 | TAL1 |
|-----------|----|-------|-----|--------|------|
| GM23392*B | -1 | 11    | -5  | 3      | -2   |

## **Endoderm**

|           | SOX7 | SOX17 | FOXA2 | AFP  |
|-----------|------|-------|-------|------|
| GM23392*B | 46   | -6    | -6    | 3583 |

Table 1. Fold difference values of gene expression of EB. Fold difference is relative to undifferentiated cells. Ct values are normalized to that of GAPDH.

## **Neural Differentiation**



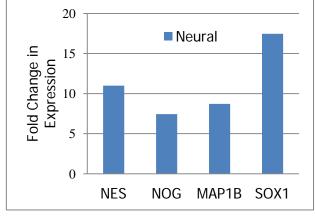



Figure 5A. Image of Neuronal Differentiation

Figure 5B. Gene expression following neuronal differentiation. Fold difference is shown relative to undifferentiated iPS cell line.

## **Cardiac Differentiation**

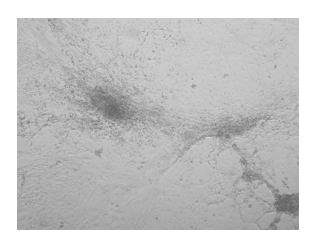



Figure 6A. Image of cardiac differentiation.

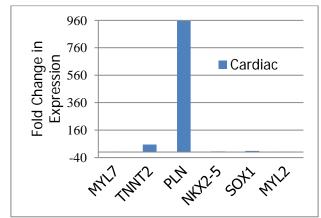



Figure 6B. Gene expression following cardiac differentiation. Fold difference is shown relative to undifferentiated iPS cell line.

## **Definitive Endoderm Differentiation**

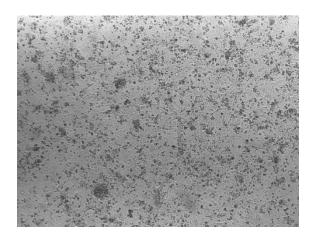



Figure 7A. Image of Definitive Endoderm Differentiation

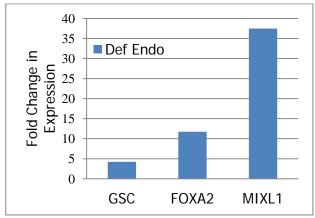



Figure 7B. Gene expression following Definitive Endoderm differentiation. Fold difference is shown relative to undifferentiated iPS cell line.

| ⊠ Pass                                        |
|-----------------------------------------------|
| ☐ Fail                                        |
| Other:                                        |
| Flever Madore.                                |
| Steve Madore, PhD Director, Stem Cell Biobank |
| Director, Stem Cell Biobank                   |
| July 27, 2012                                 |



# **Teratoma Formation Analysis Report**

#### **Project Information**

Service title: Teratoma Formation Analysis

Customer: Coriell Institute

PI/Contact person: Karen Fecenko-Tacka

Report date: July 17, 2012 Project manager: Qi Zheng

Contact person: Tianmin "Ivy" Zhang

#### Service Detail

Cell type: human iPS cells

Cell line & passage: GM23392, P7

Feeder layer: CF1 MEF

Mouse type: Fox Chase SCID-beige, male, 6 week old, from Charles River

Cell concentration: 2-3 million/site, in 30% Matrigel

3 H&E slides

Injection date: May 10, 2012

|                     | Mouse #1                                    | Mouse #2                                    | Mouse #3                                    | Control                                     |
|---------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| Later Consider      | kidney capsule                              | kidney capsule                              | kidney capsule                              | kidney capsule                              |
| Injection sites     | testis                                      | testis                                      | testis                                      | testis                                      |
| Tissue harvested    | one kidney<br>tumor and one<br>testis tumor |
| Days post-injection | 60                                          | 60                                          | 60                                          | 60                                          |

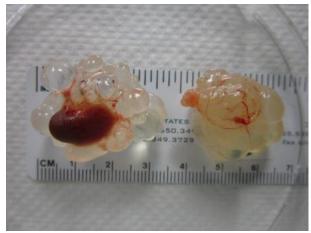
### **H&E** Histology Instruction

Histology: 10% Formalin fixed over night, embedded in paraffin, cut into 5-μm serial sections, H&E staining

Three embryonic germ cell layers: endoderm, mesoderm and ectoderm

Endoderm: digestive system (includes liver and pancreas), respiratory system, most glands

Mesoderm: muscle, blood vessels, much of the genital-urinary system, skeletal system


Ectoderm: skin, hair, nails, sweat and mammary glands, nervous system (including hypothalamus and both lobes of the pituitary gland), oral and nasal

Tel: 408-773-8007

cavities, portions of the vagina, vestibule, penis and clitoris



### **Tumor and organ pictures**



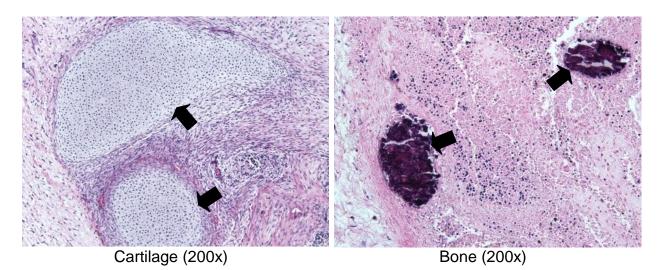
Mouse#1: one kidney tumor (left) and one testis tumor (right) harvested on day 60 after injection



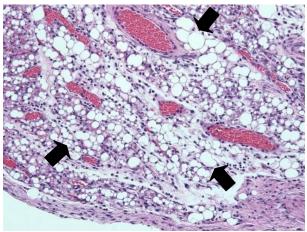
Mouse#2: one kidney tumor (left) and one testis tumor (right) harvested on day 60 after injection

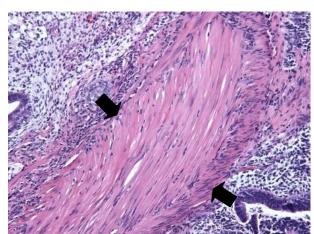


Mouse#3: one kidney tumor(left) and one testis tumor (right) harvested on day 60 after injection



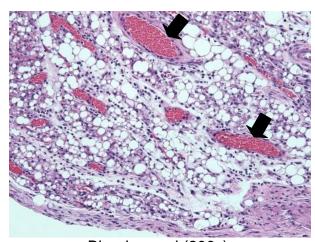

## **H&E** staining results of kidney and testis tumors:


## Endoderm




### Mesoderm

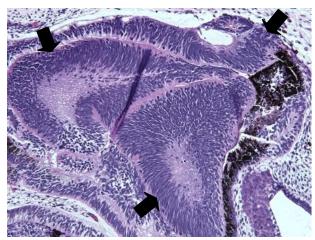


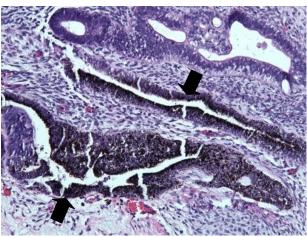







Adipose tissue (200x)


Muscle (200x)




Blood vessel (200x)



#### Ectoderm





Neuronal rosette (200x)

Pigmented cells (200x)

### **Summary**

Three kidney tumors and three testis tumors are composed of scattered regions of differentiated cells and a large population of undifferentiated neoplastic cells. Three germ layers were clearly identified in histology analysis. The tissues listed above indicate that small areas of what might be these kinds of tissues were noted within the tumor. Overall, there is some degree of differentiation of these cells with organized structures, suggesting that some of these cells are pluripotent.

#### **Project manager**

Signature:

Date: 7/17/2012

Qi Zheng, Ph.D. Senior Scientist

Reviewed and proved by

Signature:

Date: 7/17/2012

Tel: 408-773-8007

Steve Yu, Ph.D.

**Director of Service Department**